Effect of FK506 administration in alpha motor neurons after primary and delayed repair of the sciatic nerve

Umut Özsoy1, Fatos Belgin Yıldırım1, Bahadır Murat Demirel1, Arzu Hızay1, Levent Sankcıoğlu1, Necdet Demir1, Gamze Tanrıöver1, Bikem Süzen1, Nurettin Oğuz1

1Department of Anatomy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
2Department of Anatomy, Faculty of Medicine, SANKO University, Gaziantep, Turkey
3Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey

Abstract

Objectives: FK506 is an effective immunosuppressive drug for treating graft rejection in transplant patients. However, the neuroregenerative effect of FK506 has been well described in the literature. The aim of this study was to investigate the effects of FK506 in alpha motor neurons after primary and delayed repair of sciatic nerve.

Methods: Rats (n=72) were divided into 6 groups. Control, sham-operated, primary repair FK506 (-), primary repair FK506 (+), delayed repair FK506 (-), and delayed repair FK506 (+) groups.

Results: After injury, the normal structure of the motor neuron perikarya was maintained by primary repair in the FK506 (+) group. In the delayed repair group, beneficial effect of FK506 was found to be less effective. The SFI value reached -50 recovery level in the FK506-treated group earlier than those of not FK506-treated groups.

Conclusion: Beneficial effect of FK506 has been approved by functional and ultrastructural data in both of primary and delayed repair groups.

Keywords: delayed repair; FK506; primary repair; regeneration; sciatic nerve

Introduction

Axotomy of the peripheral nerves causes retrograde cell death in the dorsal root ganglion neurons. Following peripheral nerve injury, the axotomized motor and sensory neurons undergo a series of retrograde degenerative changes which may result even in neuronal death. The degenerative changes are caused by injury-induced interruption of the flow of neurotrophic factors from periphery to neuronal body by retrograde transport. Therefore, FX506 also has a well-studied neuroregenerative effect

FK506 (also known as Tacrolimus, Prograf) is a powerful immunosuppressive drug for treating graft rejection and is reputed to have a superior potency relative to Cyclosporine A (CsA) in transplant patients for prevention of graft rejection. FK506 is known to inhibit calcineurin-mediated T-cell activation by forming a complex with FK506 binding protein (FKBP-12). However, FK506 and CX506 also has a well-studied neuroregenerative effect.
that may be related to FKBP-12 operating through a separate mechanism.\(^{39}\)

Effect of FK506 on different models has been well documented in the literature. FK506 has been shown to exert neuroprotective effects in degenerative diseases,\(^{30}\) ischemic insults,\(^{31-33}\) spinal cord injury,\(^{34,35}\) and neurite outgrowth in vitro.\(^{36,37}\) Furthermore, treatment with FK506 has also been reported to enhance the rate of axonal regeneration in crush injury model\(^{38-41}\) and in a peripheral nerve grafted into the injured spinal cord.\(^{42}\) FK506 has been shown in many studies to enhance recovery after immediate\(^{43}\) or delayed\(^{29,38,44}\) nerve repair. FK506 promotes neurite outgrowth in vitro and its efficiency in enhancing nerve regeneration and accelerating functional recovery has been demonstrated in transection,\(^{45-48}\) crush,\(^{39,40,41,44}\) isograft,\(^{50-52}\) and allograft models.\(^{53-55}\)

In clinical practice, diagnosis and treatment of patients with peripheral nerve injuries is often delayed. The effect of a delayed nerve repair on nerve regeneration and muscle reinnervation is still not well understood. This is surprising, because in the clinical routine an immediate reconstruction of the lesioned nerve is seldom possible. In contrast to typical animal models for nerve regeneration studies, there is a certain denervation time of the affected nerve between lesion and reconstruction. The results of the few animal studies using different nerves, animal models, and methods are contradictory.\(^{36-44}\) Some of them showed that an immediate nerve suture was superior to any delayed nerve suture, whereas others reported no differences. Therefore, studying on a more relevant model of nerve reconstruction is important.

Although immediate subcutaneous applications of FK506 after incision have been reported as the most effective method,\(^{36}\) delayed or intermittent applications have also been reported as effective methods.\(^{52}\) In a recent report, it has been demonstrated that the delayed administration of FK506 after surgery (even a 7-day-delay) causes reduction in axonal regeneration.\(^{29}\) In literature, beneficial effects of the FK506 have been reported in peripheral nervous system. However, effect of FK506 on alpha motor neurons has not been reported. Therefore, in the present study we aimed to study effects of FK506 on alpha motor neurons after primary and delayed repair of sciatic nerve.

Materials and Methods

Animals

A total of 72 female Wistar rats (200 to 250 g) were used in the present study (Table 1). We used female rats, since it has been reported that testosterone accelerates the regeneration of peripheral nerves.\(^{63,64}\) The rats were divided into 6 groups as follows: Group 1, control; Group 2, sham-operated; Group 3, primary repair FK506 (-); Group 4, primary repair FK506 (+); Group 5, delayed repair FK506 (-), and Group 6, delayed repair FK506 (+). Six animals were housed per cage and maintained on a 12:12 h light-dark cycle; lights on from 7.00 to 19.00. Food and water were provided ad libitum. All procedures were reviewed and approved by the Animal Care and Usage Committee of Akdeniz University (protocol number 04-17).

Two subjects from the FK506 (+) and FK506 (-) groups each were excluded from the study due to postoperative death within a week. New subjects were operated in place of these, and the necessary postoperative care and FK506 applications were performed.

Sciatic nerve injury

Before surgery, animals were anesthetized with intramuscular injection of a mixture of Xylazine HCl (15 mg/kg) and Ketamine (100 mg/kg). The left side of the hindlimb was shaved and swabbed with antiseptic solution. A longitudinal cutaneous incision was made in the back of the thigh. Dissection was carried out along a plane separating the hamstring and gluteal muscles to expose the sciatic nerve. Careful dissection was performed to isolate the sciatic nerve from the surrounding connective tissue over a length of 2 to 2.5 cm. The sciatic nerve was unilaterally injured by microscissors (Figure 1a–c).

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>Cut injury</th>
<th>Primary repair</th>
<th>Delayed repair</th>
<th>FK506 treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: control</td>
<td>12</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>2: sham-operated</td>
<td>12</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>3: primary repair</td>
<td>12</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>4: primary repair + FK506</td>
<td>12</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>5: delayed repair</td>
<td>12</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>6: delayed repair + FK506</td>
<td>12</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>
In the primary repair group, the cut nerve stumps were coapted (totally 4 sutures) with 10.0 suture material (Figure 1d). The wound was closed with 2-0 suture material and rats were allowed to recover. In the sham-operated group, after a longitudinal cutaneous incision, the sciatic nerve was exposed and the wound was closed without sciatic nerve injury. In the delayed repair group, the skin was closed following the nerve cut. At the end of a seven-day delay period, the sprouted axons in the proximal nerve stump were pruned to refresh the cut. After this procedure, the cut nerve stumps were coapted the same way as in the primary repair group.

FK506 administration
5 mg/kg/day subcutaneous FK506 (Prograf, Eczacibaşı, Istanbul, Turkey) administration was performed from the day of sciatic nerve injury until the day of sacrifice. The FK506 administration was not interrupted during postoperative days (even at the weekends). The same volume of saline was administered to the vehicle-treated animals (Groups 3 and 5). Animals were weighted weekly to adjust dose of FK506 for each animal.

Evaluation tests
Walking pattern analysis
Motor function recovery was monitored by analyses of free walking patterns. This method was originally described by De Medinaceli et al.,[65] and later modified by Carlton and Goldberg[66] and Bain et al.[67] The overall index of sciatic nerve function was used as a parameter to evaluate the recovery of coordinated motor function of the injured hind paw. The test procedure is as follows: both hindpaws of the rats were touched on a stamp containing ink. Then, rats were allowed to walk on a corridor (80 cm long, 7 cm wide, and inclining 10 degrees) covered by pho-
Effect of FK 506 on motor neurons after sciatic nerve injury

Anatomy • Volume 10 / Issue 1 / April 2016

tocopy paper. From the footprints, the sciatic function index (SFI) was calculated using the formula developed by Bain et al.8 An SFI of 0 was considered normal, whereas an SFI of -100 meant total impairment. An experienced observer analyzed the walking patterns on the 1st, 2nd, 3rd, 4th, 5th, and 6th postoperative weeks.

Sensory function

Functional sensory recovery was analyzed by pinch test. The sole of the foot was pinched using a forceps. A gradual scale with four levels was used to assess withdrawal reflex (sensory recovery as: no response (Grade 0), mild response (Grade 1), moderate response (Grade 2), and full response (Grade 3). Animals showing full withdrawal response to pinch (Grade 3) were noted for further statistical analysis. Withdrawal response of animals was noted on the 1st, 2nd, 3rd, 4th, 5th, and 6th postoperative weeks.

Tissue collection

On the last postoperative day, rats were anesthetized with a combination of Ketamine (Ketalar®) (100 mg/kg, IM) and Xylazine HCl (Rompun®) (15 mg/kg, IM) diluted in saline. Rats were perfused transcardially with 250 ml heparinized saline and spinal cord was dissected free. Spinal cord samples (approximately 1 cm) were harvested from the level of lumbar intumescence. Care was taken not to damage spinal cord tissue while dissecting the surrounding bony structures. Sciatic motor neuron pool was sampled after transverse sectioning of the lumbar intumescence. Sciatic nerve samples were harvested 0.5 cm below the lesion site and immediately transferred to routine electron microscopic tissue preparation procedure.

Electron microscopic analysis

Spinal cord samples (each 1 mm³) belonging to lumbar intumescence were fixed with 2% glutaraldehyde in 0.1 M Sorensen’s phosphate buffer (pH 7.2) at +4° for two hours. The tissue samples were post-fixed in 1% osmium tetroxide (OsO₄) solution for one hour. Samples were dehydrated through a gradually increasing series of ethanol and embedded in Araldite resin (Araldite CY 212, 91 ml + dodecenyl succinic anhydride (DDSA) 84 ml+N,N-dimethylbenzylamine (BDMA) 3.5 ml, TAAB Company, Aldermaston, UK). Semi-thin (1 micrometer) and ultra-thin (40–60 nm) sections were obtained using diamond knives on a Leica ultramicrotome (Leica Ultratut, UCT’, Leica MZ6; Leica Microsystems GmbH, Wetzlar, Germany). Sections were examined to determine the ventral horn for motor neuron pool. Then, ultra-thin sections were obtained from area of interest. Ultra-thin sections were collected on copper grids (Mesh 100, TAAB, England) coated with Formvar 15/95 Resin (EMS-Electron Microscopy Sciences, Fort Washington, PA, USA). In semi-thin sections (1 micrometer), routine toluidine blue staining method was applied for orientation. In ultra-thin sections, double-contrast staining was applied with uranyl acetate (100 ml methanol and 5 g uranyl acetate) and Reynold’s lead nitrate solution. Ultra-thin sections were examined using a transmission electron microscope (Leo 906E; Zeiss, Jena, Germany).

Data analysis

All data (mean ± standard deviation) were analyzed with SPSS Statistical Package for Social Sciences (SPSS) software (version 11.0; SPSS Inc, Chicago, IL, USA). A p value less than 0.05 was considered as statistically significant. Comparison of SFI data was done using one way ANOVA (with Tukey’s post hoc test) and Pinch test data was done by chi-square test.

Results

SFI values

The print length (PL) of the animals in all experimental groups was considerably longer, and toe spreading and intermediate toe spreading was narrower on the injured site on the day following injury. The SFI values were -90.65±5.29, -99.65±6.42 for Group 3 (primary repair) and Group 5 (delayed repair), respectively. The SFI value in Group 3 (primary repair) and Group 5 (delayed repair) could not recover to the -50 values even at the end of the 6th postoperative weeks (Figure 2). FK506 treatment

![Figure 2. Sciatic function index values of groups.](image-url)
affected the onset week of the -50 level of SFI among the FK506 treated groups, i.e. while Group 4 (primary repair + FK506) reached -50 levels Group 6 (delayed repair + FK506) could not reach at the 6th postoperative week. At the end of the 6th postoperative week no significant difference was observed between Group 2 (sham-operated) and Group 4 (primary repair + FK506).

Onset day of withdrawal response to pinch

The onset day of withdrawal to pinch appeared at the 3rd postoperative week in Group 4 (primary repair + FK506) and Group 5 (delayed repair). In this week, only two animals displayed Grade 3 withdrawal to pinch. However, seven, two, and three animals showed withdrawal to pinch in Group 4 (primary repair + FK506), Group 5 (delayed repair), and Group 6 (delayed repair + FK506), respectively (Figure 3). At the end of the 6th postoperative week no significant difference was observed between Group 2 (sham-operated) and Group 4 (primary repair + FK506).

Electron microscopic evaluations

The ultrastructure of sciatic nerve samples of the control and sham-operated groups displayed normal structural organization (Figure 4). Ventral horn samples in the control group were compared to those of primary repair and delayed repair groups with or without FK506 treatment. The ultrastructural morphology of the ventral horn in the primary repair group with FK506 seemed to be similar to the control groups. There was no apparent structural damage on the pericaryon of motor neurons. Also, no defect or edema was observed in the neuropil area and neurons. However, clear oedematous gaps wrapping the pericaryons were evident in Group 3 (primary repair). In this group, capillary diameters were observed to be narrowed. Moreover, oedematous areas were observed in the astrocytic feet.

The preservative effect of FK506 was revealed in the delayed repair group as well as the primary repair group ultrastructurally. Also, no neuropil oedemas or deformation areas were evident in Groups 4 and 6. On the other
hand, FK506 was not properly effective on the ultrastructure of neurons (Figure 5).

Discussion
A correlation between time of nerve repair and functional recovery was reported in a number of studies.\cite{68-71} Time-dependent changes that affect the clinical outcome have also been reported following nerve injury.\cite{47,48,58,69-73} Therefore, relationship between the time of injury, surgical repair and initiation of drug therapy are important factors in usage of agents with neurodegenerative and/or neuroprotective effects. In the present study, we limited postoperative period as 6 weeks to observe the effects of FK506 on functional, ultrastructural properties of nerve recovery. This postoperative time period was also used in other studies.\cite{43,74-77}

Sulaiman et al.\cite{48} investigated the effect of FK506 treatment in chronic denervation and chronic axotomy models which were formed by a total transection of the tibial and common peroneal nerves. In the chronic axotomy model, at the end of a 2-month delay, the proximal stump of the tibial nerve was coaptated to the freshly cut distal stump of the peroneal nerve. In another model of chronic denervation, after a 2-month of delay, the proximal stump of the peroneal nerve was coaptated to the freshly cut distal stump of the tibial nerve. Afterwards, they reported an increase in the number of HRP-labeled motor neurons, number of axons and myelin sheath thickness after daily administration of 5 mg/kg FK506 in chronic axotomy model. Although the study of Sulaiman et al.\cite{48} was not applicable in clinical practice, their results are important in terms of giving an idea about the effects of FK506.

In clinical practice, diagnosis and treatment of patients with peripheral nerve injuries is often delayed. Coaptation of the transected nerve stumps cannot be performed immediately after incision. However, in the experimental setups, neuroregenerative/neuroprotective agents are often applied soon after nerve cut injury and coaptation. In the present study, we applied delayed nerve repair model in line with the frequently encountered clinical scenario, and investigated the ultrastructural effects of FK506 on the alpha motor neurons. We found that FK506 treatment resulted in normal motor neuron structure. This finding was not observed in FK506 (-) group. Additionally, in the delayed repair group, in which nerve repair was applied 7 days after the injury, beneficial effect of FK506 was lower than those of the primary repair group. In a recent study, Brenner et al.\cite{29} investigated the neuroregenerative effect of FK506. In their study, they applied FK506 after primary and delayed repair and found that FK506 administration after delayed repair did not cause an increase in the nerve regeneration. Additionally, they showed a decrease in the number of retrogradely labeled motor neurons.

Ma et al.\cite{78} found 21–31% loss of motor neurons at 8 and 16 weeks following C7 spinal nerve injury. Effects of the delayed repair after nerve cut injury were not only investigated on the spinal nerves, but also on the cranial nerves. Guntinas-Lichius et al.\cite{79} examined the effects of delayed repair using the hypoglossal-facial anastomosis model to reanimate the facial nerve. In addition, they reported that this model was more realistic for repair of...
a predegenerated nerve, as a certain time was allowed after cut of the facial nerve. Meanwhile, Wallerian degeneration occurred on the distal part of the nerve, debris of myelin was phagocytized, and atrophic changes were evident in the target muscle. They reported that the coaptation of the freshly cut hypoglossal nerve with predegenerated facial nerve would be a more appropriate way to investigate the effect of the delayed repair. Using this model, the researchers coapted the freshly cut hypoglossal nerve to the predegenerated facial nerve after the postoperative days 7, 14, 56, 112, and 224. The delayed repair was reflected by an increase in neurons labeled with HRP, whereas decreases in cross-section area of muscle of delayed repair groups.
Sobol et al.44 studied the effects of FK506 administration after primary nerve repair and reported that nerve regeneration was significantly increased after administration within 3 days, while a 5 day delay in the nerve repair caused little or no effect. Therefore, it was concluded that FK506 was effective when given immediately after injury. In our study, delayed administration of FK506 after repair displayed a beneficial effect on the motor neuron ultrastructure, but primary repair was more effective when FK506 treatment started immediately after injury.

Conclusion
FK506 is used to provide functional recovery at early period of peripheral nerve injury. Beneficial effects of FK506 were determined in both groups of primary and delayed repair. Application of the FK506 treatment after primary repair gave better ultrastructural and functional results. Our literature search revealed no article, describing beneficial effects of FK506 administration on sciatic motor neurons after primary and delayed repair.

Acknowledgements
This study was supported by Akdeniz University Research Fund (2007.01.0103.004).

References
18. Tornqvist E, Aldskogius H. Motoneuron survival is not affected by the proximo-distal level of axotomy but by the possibility of regenerating axons to gain access to the distal nerve stump. J Neurosci Res 1994;39:159–65.

Effect of FK 506 on motor neurons after sciatic nerve injury

Anatomy • Volume 10 / Issue 1 / April 2016

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND3.0) Licence (http://creativecommons.org/licenses/by-nc-nd/3.0/) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Please cite this article as: Ozsoy U, Yildirim FB, Demirel BM, Hizay A, Sarikcioglu L, Demir N, Tanrıöver G, Süzen B, Oğuz N. Effect of FK506 administration in alpha motor neurons after primary and delayed repair of the sciatic nerve. Anatomy 2016;10(1):30–39.